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Abstract : Here we consider first order autoregressive process with changing autoregressive coefficient at 

some point of time m. This is called change point inference problem. For Bayes estimation of m and 

autoregressive coefficient we used MHRW (Metropolis Hasting Random Walk) algorithm and Gibbs sampling. 

The effects of prior information on the Bayes estimates are also studied. 
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I. INTRODUCTION 

Mayuri Pandya (2013) had studied the Bayesian analysis of the autoregressive model Xt = β1 Xt-1 + εt , 

t=1,2,…,m and Xt = β2 Xt-1 + εt , t=m+1,…,n where 0 < β1, β2 < 1, and εt was independent random variable with 

an exponential distribution with mean θ1 and is reflected in the sequence after εm is changed in mean θ2. M. 

Pandya, K. Bhatt, H. Pandya, C. Thakar (2012) had studied the Bayes estimators of m, β1 and β2 under 

Asymmetric loss functions namely Linex loss & General Entropy loss functions of changing auto regression 

process with normal error. Tsurumi (1987) and Zacks (1983) are useful references on structural changes. 

 

II. PROPOSED AR (1) MODEL: 
Let our AR(1) model be given by,  

𝑋𝑖 =   
𝛽1𝑋𝑖−1 + 𝜖𝑖 ,         𝑖 = 1,2, … , 𝑚.

  𝛽2𝑋𝑖−1 +  𝜖𝑖 ,        𝑖 = 𝑚 + 1, … , 𝑛.
                                                (1) 

where, 𝛽1 and 𝛽2 are unknown autocorrelation coefficients, 𝑥𝑖  is the i
th 

observation of the dependent variable, 

the error terms 𝜖𝑖  are independent random variables and follow a N( 0, 𝜎1
2) for i=1,2,…,m and a N( 0, 𝜎2

2) for i= 

m+1, …..,n and 𝜎1
2and 𝜎2

2 both are known. m is the unknown change point and 𝑥0  is the initial quantity. 

 

III. BAYES ESTIMATION 
The Bayes procedure is based on a posterior density, say, g 𝛽

1
, 𝛽

2
, 𝑚 | 𝑍 , which is proportional to the 

product of the likelihood function L 𝛽
1

, 𝛽
2
, 𝑚 | 𝑍 , with a joint prior density, say, g 𝛽

1
, 𝛽

2
, 𝑚   representing 

uncertainty on the parameters values. 

The likelihood function of β1, β2 and m, given the sample information Zt = (xt-1, xt), t = 1, 2,..., m, 

m+1,..., n. is, 

𝐿 𝛽1, 𝛽2 , 𝑚|𝑍 = 𝐾1  . 𝑒𝑥𝑝  −
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1
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2
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−
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(2) 

Where, 

𝑆𝑘1 =   xi−1
2

k

i=1 

 𝑆𝑘2 =   xi  xi−1

k

i=1 

 

𝐴1𝑚 =   xi
2

m

i=1 

 𝐴2𝑚 =   xi
2

n

i=m+1 

 

𝑘1 = (2𝜋)−
𝑛
2  

            (3) 
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3.1 Using Informative (Normal) Priors On 𝜷1, 𝜷2 

In this section, we derive posterior density of change point m, β1 and β2 of the model explained in 

equation (1) under informative priors. 

We consider the AR(1) model shown in equation (1) with unknown 𝜎−2. We suppose uniform prior of 

change point same as Broemeling (1987), we also suppose that m, β1 and β2 are independent. 

𝑔 𝑚 =  
1

𝑛 − 1
 

We have normal prior density on β1 and β2 as, 

𝑔 𝛽1 =
1

 2𝜋𝑎1

𝑒
− 

1
2

  
𝛽1
𝑎1

 
2

 

𝑔 𝛽2 =
1

 2𝜋𝑎2

𝑒
− 

1
2

  
𝛽2
𝑎2

 
2

 

Hence, joint prior p.d.f. of β1, β2 and m, say g( β1, β2, m)  is Joint prior density of 𝛽1 , 𝛽2 and 𝑚 Say 

𝑔 𝛽1 , 𝛽2, 𝑚  is 

𝑔 𝛽1 , 𝛽2, 𝑚 =
1

2𝜋𝑎1𝑎2   𝑛−1 
 𝑒

− 
1

2
  

𝛽1
𝑎1

 
2

𝑒
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1

2
  

𝛽2
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2

   (4) 

Using Likelihood function (2) with the joint prior density (4), the joint posterior density of 𝛽1, 𝛽2 , 𝑚 say 

𝑔(𝛽1 , 𝛽2, 𝑚|𝑍) is, 

𝑔 𝛽1 , 𝛽2, 𝑚|𝑍 =
𝐾1

ℎ1 𝑧 
 𝐿 𝛽1 , 𝛽2, 𝑚|𝑍  . 𝑔 𝛽1 , 𝛽2, 𝑚   
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(5) 

Where, 

𝐾2 =
𝐾1
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ℎ1 𝑍  is the marginal density of 𝑧 given by,  

ℎ1 𝑍 =    𝐿 𝛽1 , 𝛽2, 𝑚 | 𝑋  . g 𝛽1 , 𝛽2, 𝑚  𝑑𝛽1𝑑𝛽2
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Where, 

𝑇1 𝑚 =  𝑘𝑚𝐺1𝑚𝐺2𝑚  (8) 
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Marginal posterior density of change point m, 𝛽1𝑎𝑛𝑑 𝛽2 are, 

𝑔1(𝑚|𝑥) =  
𝑇1(𝑚)

 𝑇1(𝑚)𝑛−1
𝑚=1

 (12) 

𝑔1 𝛽1|𝑋 =  
𝑘3

ℎ1(𝑋)
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𝐴1  + 𝛽1𝐵1  

𝑛−1

𝑚=1
 𝐺1𝑚  (13) 

𝑔1 𝛽2|𝑋 =  
𝑘3
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 𝐺1𝑚  , 𝐺2𝑚  and 𝑘𝑚  are define as shows in equation (9), (10) and (11) respectively. 

Now, the Bayes estimator of any function of parameter 𝛼, say 𝑔(𝛼) under the squared loss function is, 

   𝑬𝜶|𝒛 𝒈 𝜶 𝒁  =  𝜶 𝒈 𝜶 𝒁  
∞

𝟎
𝒅𝜶    (*)  

Where, g(α|Z) is marginal posterior density of α. It is complicate to compute equation (*) analytically 

in this case. Therefore, we use MCMC methods to find the Bayes estimator of β1, β2 and m. 
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Gibbs Sampling algorithm: 
Given a posterior distribution g(α|Z) for unknown parameters α=( α1,…, αk) defined, at least up to 

proportionality, by multiplying the likelihood function with the corresponding prior distribution, we can easily 

identify the full conditional distribution g(αi|Z, αj,j≠i), upto proportionality, by regarding g(α|Z) as a function of 

αi(i=1,…,k) only, corresponding all other αj, j≠i, to be fixed. 

To implement the Gibbs sampling procedure, we re-write (13) as full conditional of 𝜷𝟏, by fixing all other 

parameters i.e. 𝜷𝟐 and m. Hence full conditional density of 𝜷𝟏 given 𝜷𝟐 and m is as follows,  

𝑔(𝛽1  | 𝛽2, 𝑚, 𝑍) ∝ 𝑁  
𝐵1

𝐴1
 ,  

1

 𝐴1
 

2

            (15) 

where A1 and B1 shows in equation (6). 

We re-write (14) as full conditional density of β2 by fixing all other parameters β1 and m, we get the full 

conditional density of β2 given β1, 𝜎-2
 and m is as follows, 

𝑔(𝛽2 | 𝛽1 , 𝑚, 𝑍) ∝ 𝑁  
𝐵2

𝐴2
 ,  

1

 𝐴2
 

2

           (16) 

where A2 and B2 shows in equation (6). 

In order to estimate the parameter 𝛽1, and 𝛽2 we use Gibbs sampling to generate sample from the full 

conditional density of 𝛽1 and 𝛽2 given respectively in (15) and (16). We use following algorithm:  

 

Algorithm:  

Initialize 𝛽1 = 𝛽10 , 𝛽2 = 𝛽20  and 𝑚 = 𝑚0 then,  

Step-1: Generate 𝛽1~𝑁 
𝐴1

𝐵1
,  

1

 𝐵1
 

2

 , using Gibbs Sampling.  

Step-2: Generate 𝛽2~𝑁  
𝐴2

𝐵2
,  

1

 𝐵2
 

2

 , using Gibbs Sampling.  

Step-3: Repeat the above steps. 

 

mcmc techniques: 

Since the posterior distribution of change point (12) has no closed form, we propose to use MCMC 

techniques to generate the samples from the posterior distribution. To implement the MCMC Techniques, we re-

write (12) as target function of m, by fixing all other parameters i.e. 𝜷𝟏 and  . Hence target function of m given 

𝜷𝟏 and   is as follows,  

𝑔 𝑚  𝛽1 , 𝛽2 , 𝑍 ∝  𝑘𝑚  𝑒 − 
1

2
 𝛽1

2𝐴1  + 𝛽1𝐵1  𝑒 − 
1

2
 𝛽2

2𝐴2  + 𝛽2𝐵2  
  (17) 

where A1, B1,A2 B2    𝑎𝑛𝑑 𝑘𝑚 shows in equation (6) and (11) respectively. 

 

IV. NUMERICAL STUDY 
Application To Generated Data 

Let us consider AR(1) model as 

𝑋1 =   
0.1𝑋𝑖−1 + ∈𝑖  ,   𝑖 = 1, 2, … 10

0.3 𝑋𝑖−1 + ∈𝑖  , 𝑖 = 11, 12, . . .20
     (18) 

Where, the error terms 𝜖𝑖  are independent random variables and follow a 𝑁( 0,1) for i=1,2,…,10. and a 𝑁(0,4) 

for i= 11, …..,20 and 𝜎1
2and 𝜎2

2known. m is the unknown change point and 𝑥0 = 0.1 is the initial quantity. We 

have generated 20 random observations from proposed AR(1) model given in (18). The first ten observations are 

from normal distribution with 𝜎1
2= 1 and next 10 are from normal distribution with 𝜎2

2 = 4. β1 and β2 

themselves were random observations from normal  distributions with prior means 1 = 0.1, 2 = 0.3 and 

variances a1 = 0.1 and a2 =0.1. These observations are given in table-1. 

 

Table -1: Generated observations from proposed AR(1) model. 
i 1 2 3 4 5 6 7 8 9 10 

Xi 0.167 -0.204 0.399 -0.259 -0.784 -1.058 0.819 0.404 1.215 1.537 

   ∈𝑖 0.157 -0.221 0.420 -0.299 -0.758 -0.979 0.925 0.322 1.175 1.416 

i 11 12 13 14 15 16 17 18 19 20 

Xi -3.833 -16.173 9.441 11.857 20.645 1.458 13.249 -9.335 19.812 30.657 

   ∈𝑖 -4.294 -15.023 14.293 9.025 17.088 -4.734 12.812 -13.310 22.613 24.713 

 

To generate a random sample from (9.3) using the RWM-H algorithm, the selected proposal is uniform 

(2, 19) same as prior, which is symmetric around 10 with small steps. Since the target function is bounded. 

The initial distribution is chosen as uniform (1, 19). Further we truncate the initial distribution and we get 

integer value of the Bayes estimate of change point (m) is 10 when Selected Proposal is U(1, 19) and Initial 
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Distribution is U(3, 14). The results are shown in Table 2 for data given in Table1 when given value of β1=0.1, 

β2=0.3, 𝜎1
2
=1 and 𝜎2

2
=16.  

 

Table 2: Bayes Estimates of Change point (m) using RWM-H algorithm under SEL 
Bounded Selected 

proposal 

Initial 

distribution 

Bayes Estimate 

of Change Point 

(𝑚) 

Integer value of Bayes 

estimate of Change Point 

(𝑚)  

BD(2,19) U(1,19)  U(1,19) 8.4 8 

BD(2,19) U(2,19)  U(2,19) 8.6 9 

BD(3,19) U(1,19)  U(1,19) 10.3 10 

BD(3,19) U(1,19)  U(3,14) 10.2 10 

 

We also compute the Bayes estimators of m using RWM-H algorithm for different prior consideration 

for data given in Table 1. The results are shown in Table 3. 

 

Table 3: Bayes Estimates of Change point (𝑚) using RWM-H algorithm under SEL for different prior 

consideration. 

Sr. No. 𝑎1
2 𝑎2

2 
Bayes Estimate of change point (m) 

(Posterior Mean) 

1 0.0100 0.01 10 

2 0.0400 0.04 10 

3 0.0490 0.04 10 

4 0.0550 0.09 10 

5 0.0600 0.25 10 

6 0.0625 0.49 10 

7 0.0900 0.64 10 

8 0.4900 0.81 10 

9 0.8100 1.00 10 

10 1.0000 4.00 10 

 

Now we compute the Bayes estimators of β1 (when given value of β2=0.3, m=10, 𝜎1
2
 =1 and 𝜎2

2 
=16) 

and β2 (when given value of β1=0.1, m=10, 𝜎1
2
 =1 and 𝜎2

2 
=16) using Gibbs sampling MCMC algorithm for 

different prior consideration for data given in Table 1. The results are shown in Table 4.  

 

Table 4: Bayes Estimates of β1 and β2 using Gibbs Sampling MCMC algorithm under SEL for different prior 

consideration. 

Sr. No. 𝑎1
2 𝑎2

2 
Bayes Estimates of 

S.D. of Bayes 
Estimates of 

β1 β2 β1 β2 

1 0.0100 0.01 0.025 0.255 0.048 0.008 

2 0.0400 0.04 0.090 0.305 0.048 0.008 

3 0.0490 0.04 0.107 0.305 0.048 0.008 

4 0.0550 0.09 0.118 0.344 0.048 0.008 

5 0.0600 0.25 0.126 0.367 0.048 0.008 

6 0.0625 0.49 0.130 0.374 0.048 0.008 

7 0.0900 0.64 0.172 0.376 0.048 0.008 

8 0.4900 0.81 0.415 0.377 0.048 0.008 

9 0.8100 1.00 0.475 0.378 0.048 0.008 

10 1.0000 4.00 0.496 0.381 0.048 0.008 

 

Figure 1 graph the full conditional of 𝛽1 when a sample of size 10000 is generated from (9.1), Gibbs Sampling 

with MCMC algorithm has been run. (β2=0.3, m=10, 𝜎1
2
 =1 & 𝜎2

2 
=16) 
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Figure 2 graph the full conditional of 𝛽2 when a sample of size 10000 is generated from (9.2), Gibbs Sampling 

with MCMC algorithm has been run. (β1=0.1, m=10, 𝜎1
2
 =1 & 𝜎2

2 
=16) 
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